Bimetallic Systems. Part 10.¹ Synthesis of Complexes of Type [(RC=C)Pt- $(\mu$ -dppm)₂Pt(C=CR)] (dppm = Ph₂PCH₂PPh₂, R = Ph or *p*-tolyl) and their Corresponding 'A Frames' [(RC=C)Pt(μ -dppm)₂(μ -H)Pt(C=CR)]Cl or [(RC=C)Pt(μ -dppm)₂(μ -X)Pt(C=CR)] with X = CS₂ or MeOOCC=CCOOMe

C. Richard Langrick, Paul G. Pringle, and Bernard L. Shaw * School of Chemistry, University of Leeds, Leeds LS2 9JT

Treatment of *trans*-[Pt(C=CR)₂(dppm-P)₂] (dppm = Ph₂PCH₂PPh₂, R = Ph or *p*-tolyl) with *trans*-[PtH(Cl)(PPh₃)₂] gives hydride-bridged binuclear salts of type [(RC=C)Pt(μ -dppm)₂ (μ -H)Pt-(C=CR)]Cl in good (86—97%) yield. These complexes are fluxional at +21 °C but when cooled to -56 °C the ¹H n.m.r. spectrum corresponds to a static structure with pseudo-axial and pseudoequatorial methylene hydrogen resonances. Deprotonation of these salts with sodium isopropoxide gives the binuclear complexes, [(RC=C)Pt(μ -dppm)₂Pt(C=CR)], with platinum–platinum bonds. These react with CS₂ or with MeOOCC=CCOOMe, 'X', to give 'A frames,' [(RC=C)Pt(μ -dppm)₂-(μ -X)Pt(C=CR)], which were fully characterized. Treatment of [(PhC=C)Pt(μ -dppm)₂Pt(C=CPh)] with SO₂ probably gave the 'A frame' [(PhC=C)Pt(μ -dppm)₂(μ -SO₂)Pt(C=CPh)] which was not isolated but was characterized in solution by ³¹P-{¹H} n.m.r. spectroscopy. N.m.r. and i.r. data are given.

Diplatinum complexes containing bridging $Ph_2PCH_2PPh_2$ (dppm) have been extensively studied. Such complexes include diplatinum(1) species of type (1), X = halogen, and corresponding 'A frames' of type (2), Y = CO, CH₂, CS₂, alkyne, *etc.*: in addition, charged (cationic) species with X = CO or Y = H or Cl are known.² However, hitherto, complexes of types (1) or (2) with X = C=CR (R = alkyl or aryl) have been unknown. In this paper we describe a simple synthesis for such complexes with R = Ph or *p*-tolyl which could probably be extended to other acetylides, if required.

Results and Discussion

We have previously described simple syntheses of bis(monodentate ligand) complexes of type *trans*-[Pt(C \equiv CR)₂(dppm-*P*)₂].^{3,4} We now find that treatment of such complexes with *trans*-[PtH(Cl)(PPh₃)₂] gives the yellow hydro-bridged salts, (**3a**) or (**3b**), in excellent yield; preparative details for these and other complexes described below are in the Experimental section. These complexes were characterized by (*i*) elemental analyses for C, H, and Cl (Table 1), (*ii*) by the presence of an i.r. absorption band due to v(C \equiv C) at 2 110 cm⁻¹ (**3a**) or 2 120 cm⁻¹ (**3b**) (Table 1), (*iii*) electrical conductivity, and particularly (*iv*) by ³¹P-{¹H} and ¹H-{³¹P} n.m.r. spectroscopy (Tables 2 and 3).

 ${}^{31}P-{}^{1}H$ and ${}^{1}H-{}^{31}P$ n.m.r. spectroscopy (Tables 2 and 3). In the ${}^{1}H-{}^{31}P$ n.m.r. spectrum of complex (**3a**) there is a hydride resonance at $\delta = -10.3$ p.p.m., ${}^{1}J(PtH) = 571$ Hz and in the ¹H n.m.r. spectrum ${}^{2}J(PPtH) = 9$ Hz. At 21 °C, in the ¹H-{³¹P} n.m.r. spectrum, the CH₂ resonance appears as a ca. 1:8:18:8:1 quintet at $\delta = 4.87$ p.p.m. with ${}^{3}J(\text{PtH}) = 38$ Hz. However, when the solution is cooled the CH₂ resonance separates out into pseudo-axial and pseudo-equatorial types and the fluxional process, which makes the CH₂ protons equivalent at 21 °C, is essentially 'frozen out' at -56 °C. We have observed this phenomenon in many other complexes containing a $Pt(\mu-dppm)_2M$ moiety and find only one of the hydrogens is coupled to platinum: this is clearly the pseudoequatorial hydrogen (H_e) for the reasons discussed previously.^{5,6} The fluxional process causing equivalence of H_e , H_a is probably an inversion process $(3a) \xrightarrow{} (4a)$ with the central hydridic hydrogen passing through the ring. The *p*-tolylacetylide complex (3b) is exactly analogous to (3a): characterizing data

are in Tables 1 and 2. It similarly shows a fluxional process $(3b) \longrightarrow (4b)$ which is 'frozen out' at -56 °C (Table 3). A similar hydride-inversion mechanism has been postulated previously for related complexes.⁷

One would expect that the cationic hydrogen-bridged structures (3a) or (3b) to deprotonate and a preliminary ${}^{31}P_{-}{}^{1}H_{+}$ n.m.r. experiment suggested that this was so. We therefore treated *trans*-[Pt(C=CPh)₂(dppm-P)₂] with *trans*-[PtH(Cl)(PPh₃)₂] to form (3a) *in situ* and then added an equivalent amount of sodium isopropoxide. A new product, shown to be the hoped for complex of type (5a), was isolated in 66% yield and the corresponding p-tolylacetylide complex (5b) was similarly prepared in 68% yield. The formulations follow from the elemental analytical data (Table 1), the occurrence of an i.r. absorption band due to v(C=C) (Table 1), and, particularly, from the ${}^{31}P_{-}{}^{1}H_{-}^{31}P_{-}$ n.m.r. data. Thus

Complex		Analysis "	I.r. ^b (
	С	Ĥ	Cl [or S]	v(C≡C)	Other	$cm^2 mol^{-1}$
(3a) (3b) (5a) (5b)	57.0 (56.7) 57.35 (57.3) 58.1 (58.2) 58.85 (58.8) 50.05 (00.5)	4.3 (4.0) 4.15 (4.2) 3.85 (4.0) 4.2 (4.2)	2.4 (2.5) 2.25 (2.5)	2 110 2 120 2 090 2 095 2 110	090	17 14
$(7a) \cdot 3C_6H_6 \cdot 0.3CS_2^{a}$ $(7b) \cdot 1.5C_6H_6 \cdot 0.3CS_2^{d}$	59.95 (60.5) 58.4 (58.6)	4.2 (4.3) 4.3 (4.2)	[4.95 (4.9)]	2 095	980 v(C–S) 980	
$(8a) \cdot C_6 H_6^d$	59.0 (59.2)	4.3 (4.2)		2 1 1 0	v(C–S) 1 695 v(C=O)	
(8b)	58.4 (58.05)	4.5 (4.2)		2 1 1 0	1 700 v(C=O)	

Table 1. Microanalytical (%), i.r., and conductivity data

^{*a*} Calculated values in parentheses. ^{*b*} As KBr discs, values $\pm 5 \text{ cm}^{-1}$. ^{*c*} For 10⁻³ mol dm⁻³ solutions in nitrobenzene at $\pm 20 \text{ °C}$. ^{*d*} The presence of this proportion of C₆H₆ was shown by the ¹H-{³¹P} n.m.r. spectrum (in CD₂Cl₂ solution).

Table 2. ³¹P-{¹H} N.m.r. data^a

Complex	δ(P)	$^{1}J(PtP)$	$^{3}J(PtP)$	N^{b}	N' ^c	Lď
(3a)	+9.5	2 422	8	68		
(3b)	+9.4	2 427	5	71		
(5a)	+1.4	2 932	-71^{e}	83	2 861	33
(5b)	+ 1.4	2 937	-72 ^e	83	2 868	33
(6)	+16.4	3 237	+ 168	42	3 404	
(7a)	+5.8	2 852	100	37		
	+0.5	3 258	63			
(7b)	+ 5.6	2 856	98	34		
	+ 1.1	3 267	61			
(8a)	0.0	3 069	+ 73	24	3 142	
(8b)	-0.2	3 074	+ 71	22	3 145	

^a Spectra (40.25 MHz) measured in CDCl₃; chemical shifts (δ) in p.p.m. (\pm 0.1) to high frequency of 85% H₃PO₄ and coupling constants (*J*) in Hz (\pm 3). ^b N = |²J(PCH₂P) + ⁴J(PCH₂PPtP)]. ^c N' = |¹J(PtP) + ³J(PtP)] for (**6**), (**8a**), and (**8b**) or |¹J(PtP) + ²J(PtP)] for (**5a**) and (**5b**). ^d L = |²J(PCH₂P) - ⁴J(PCH₂PPtP)]. ^{e²}J(PtP) or ³J(PtP).

for the phenylacetylide complex (**5a**) the ³¹P-{¹H} n.m.r. pattern is characteristic of a diplatinum species and shows an N' doublet $[N' = |{}^{1}J(PtP) + {}^{2}J(PtP)|]$ of separation 2 861 Hz. Since ${}^{1}J(PtP) = 2 932$ Hz the values of ${}^{3}J(PtP)$ and ${}^{1}J(PtP)$ must be opposite in sign, *i.e.* ${}^{3}J(PtP) = -71$ Hz: one-bond couplings between platinum and the phosphorus of phosphines are always large and positive.^{8.9} The ¹H-{³¹P} n.m.r. pattern showed the expected coupling to two platinum atoms. The *p*-tolylacetylide complex (**5b**) gave similar n.m.r. parameters to those of the phenylacetylide complex.

It is well established that complexes of type (1), X = halogen, react with small molecules such as CO, SO₂, CS₂, and MeOOCC=CCOOMe to give the 'A frame' adducts.² We find our new complexes of type (5a) or (5b) are less reactive towards these molecules but in some cases, e.g. with CS_2 or MeOOCC= CCOOMe, adducts were readily isolated and characterized. When a deuteriochloroform solution of (5a) was treated with CO no change could be detected in the ${}^{31}P-{}^{1}H$ n.m.r. spectrum. Similar treatment with SO₂ gave an orange solution containing a new species with the following ${}^{31}P-{}^{1}H$ n.m.r. parameters: $\delta(P) = 16.4$ p.p.m., ${}^{1}J(PtP) = 3237$, ${}^{3}J(PtP) =$ 168 [and the same sign as ${}^{1}J(PtP)$, presumably positive], and $J(P_A P_{A''}) + J(P_A P_{A''}) = 42$ Hz. There were also a few weak resonances due to other (unidentified) products. We tentatively formulate this new species as the symmetrical SO_2 adduct (6). Attempts to isolate it from solution led to decomposition, and the solid product was only isolated in a crude state. It showed i.r. bands at 1 160 and 1 030 cm⁻¹ (KBr disc) which could be due to v(SO) and a band at 2 115 cm⁻¹ due to $v(C \equiv C)$. The SO₂ adduct $[ClPt(\mu-SO_2)(\mu-dppm)_2PtCl]$ is known¹⁰ as is the corresponding dipalladium complex.¹¹

Treatment of a benzene solution of complex (5a) with CS_2

Table 3.	¹ H-	and	¹ H	(³¹ P)	a	n.m.r.	data
----------	-----------------	-----	----------------	--------------------	---	--------	------

		C				
Complex	δ(Η _e)	$^{3}J(PtPCH_{e})$	δ(H _a)		$^{2}J(\mathrm{H_{e}H_{a}})$	Other resonances
(3a) ^b	5.34	71	4.13		13	$\delta(\text{Pt}H\text{Pt}) = 10.3$
(3b)°	5.32	72	4.12		14	$\delta(PtHPt) = -10.3$ $^{1}J(PtH) = 569, ^{2}J(PH) = 9$ $\delta(PtHPt) = 569, ^{2}J(PH) = 9$
(5a)	δ(CH ₂)	4.96	³ . <i>J</i> (PtH)	_	57	O(Me) = 2.10
(5b)	$\delta(CH_2)$	4.96	$^{3}J(PtH)$	=	57	$\delta(Me) = 2.09$
(7a)	3.65	77	4.16		13	
(7b)	3.65	75	4.17		13	$\delta(Me) = 2.23$ and 2.14
(8a)	3.54	62	4.16		13	$\delta(COOMe) = 2.54$
(8b)	3.53	63	4.16		13	$\delta(\text{COOMe}) = 2.54$ $\delta(\text{C}_6\text{H}_4\text{Me}) = 2.68$

^a Spectra (100 MHz) measured in CDCl₃ at +21 °C unless otherwise stated. Chemical shifts (δ) in p.p.m. (\pm 0.01) to high frequency of SiMe₄ and coupling constants (*J*) in Hz (\pm 0.1). ^b Spectra at -56 °C; at +21 °C the CH₂ resonance formed a *ca.* 1:8:18:8:1 quintet at δ 4.87 p.p.m. with ¹*J*(PtH) = 38 Hz. ^c Spectra at -56 °C; at +21 °C the CH₂ resonance formed a *ca.* 1:8:18:8:1 quintet at δ 4.87 p.p.m. with ¹*J*(PtH) = 37 Hz.

readily gave the CS₂ adduct. The formulation follows from the microanalytical (Table 1) and i.r. data (Table 1), and particularly from the ³¹P-{¹H} and ¹H-{³¹P} n.m.r. data (Tables 2 and 3). The ¹H-{³¹P} n.m.r. data show that the molecule is not fluxional at *ca*. 20 °C, *i.e.* individual resonances for the pseudo-equatorial methylene proton (H_e) coupled to platinum-195, ³J(PtH_e) = 77 Hz, and the pseudo-axial proton (H_a), which is not coupled to platinum-195, can be seen. The ³¹P-{¹H} n.m.r. data (Table 2) are of the AA'BB' type, in agreement with the CS₂ being bonded as shown in structure (**7a**). The di(*p*-tolylacetylide) complex (**7b**) was similarly characterized and showed similar n.m.r. parameters to the phenylacetylide complex. A CS₂ adduct [ClPt(μ -CS₂)(μ -dppm)₂PtCl] is known¹² and the bonding of the CS₂ is as depicted in (**7a**). We have also made [ClPt(μ -CS₂)(μ -dppm)₂PdCl].¹³

Treatment of the platinum-platinum bonded complex (5a) with MeOOCC=CCOOMe gave an adduct, formulated as (8a). The analogous chloro-complex (1a; X = Cl) reacts with electronegative acetylenes such as MeOOCC=CCOOMe to give adducts of an analogous type ¹⁴ and dipalladium analogues are also known.¹⁵ The formulation as (8a) follows from the elemental analytical and i.r. data (Table 1). The ³¹P-{¹H} n.m.r. spectrum (Table 2) is characteristic of a symmetrical diplatinum species containing a Pt(μ -dppm)₂Pt moiety. The ¹H-{³¹P} n.m.r. spectrum showed individual methylene hydrogen resonances for the pseudo-equatorial and pseudo-axial hydrogens, with ³J(PtH_e) = 62 Hz and ³J(PtH_a) being too small to observe. The di(*p*-tolylacetylide) complex (8b) was also prepared and characterized, see Experimental section and Tables 1-3.

We also found that when MeOOCC=CCOOMe was heated with $[Pt_2(C=CPh)_2(\mu-dppm)_2]$ as catalyst in boiling benzene solution the trimer hexamethoxycarbonylbenzene was produced and identified by its mass spectrum, m/e = 426, for the parent molecular ion.

Experimental

The general procedures and apparatus used were the same as in other recent publications from this laboratory.¹

Preparations.— $[Pt_2(C \equiv CPh)_2(\mu-H)(\mu-dppm)_2]Cl$ (3a). The complexes trans- $[Pt(C \equiv CPh)_2(dppm-P)_2]$ (300 mg, 0.26 mmol) and $[PtH(Cl)(PPh_3)_2]$ (205 mg, 0.27 mmol) were dissolved in CH_2Cl_2 (10 cm³) and the solution stirred for 5 min. The solution was evaporated to dryness under reduced pressure and the residue triturated with Et_2O . This gave the required product as

a yellow powder. Yield 350 mg (97%). Complex (3b) was made similarly in 86% yield.

[Pt₂(C=CPh)₂(μ -dppm)₂] (**5a**). The complex *trans*-[PtH(Cl)(PPh₃)₂] (205 mg, 0.27 mmol) was added to a solution of *trans*-[Pt(C=CPh)₂(dppm-P)₂] (300 mg, 0.26 mmol) in dry tetrahydrofuran (10 cm³). A solution of sodium isopropoxide in propan-2-ol (1.24 cm³, 0.21 mol dm⁻³, 0.26 mmol) was added. The solution was then evaporated to dryness under reduced pressure and the residue was triturated with Et₂O. The solid was washed with water and dried *in vacuo* over P₂O₅. This gave the required product as yellow microcrystals. Yield 233 mg (66%). Complex (**5b**) was made similarly in 68% yield.

 $[Pt_2(C \equiv CPh)_2(\mu-CS_2)(\mu-dppm)_2]$ - $3C_6H_6$ -0. $3CS_2$ (7a). Carbon disulphide (36 μ l, 0.45 mg, 0.59 mmol) was added to a solution of $[Pt_2(C \equiv CPh)_2(\mu-dppm)_2]$ (80 mg, 0.059 mmol) in benzene (5 cm³). After 90 min the solution was evaporated to *ca*. 1 cm³ under reduced pressure and MeOH (5 cm³) was added: the evaporation and dilution with MeOH was repeated. This gave the required product as orange microcrystals. Yield 65 mg (75%). Complex (7b) was made similarly in 68% yield.

 $[Pt_2(C \equiv CPh)_2(\mu-MeOOCC \equiv CCOOMe)(\mu-dppm)_2] \cdot C_6H_6$ (8a). Dimethyl acetylenedicarboxylate (35 µl, 30 mg, 0.214 mmol) was added to a solution of complex (5a) (80 mg, 0.059 mmol) in benzene (5 cm³). After 0.5 h, MeOH (20 cm³) was added and the solution was evaporated to *ca*. 2 cm³ under reduced pressure. This gave the required product as yellow microcrystals. Yield 58 mg (62%). The *p*-tolylacetylide analogue (8b) was made similarly, as a yellow solid, in 62% yield.

Action of Sulphur Dioxide on $[Pt_2(C=CPh)_2(\mu-dppm)_2]$.---Sulphur dioxide was bubbled through a solution of complex (**5a**) (20 mg) in CDCl₃ (0.5 cm³) for *ca*. 5 min during which time the solution turned orange. The ³¹P-{¹H} n.m.r. spectrum showed that the main phosphorus-containing species present was a symmetrical diplatinum complex to which we assign structure (**6**). Attempts to isolate this product led to decomposition.

Acknowledgements

We thank the S.E.R.C. for support and Johnson Matthey Ltd. for the generous loan of the platinum salts.

References

- 1 Part 9, J. A. Iggo and B. L. Shaw, preceding paper.
- 2 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99.
- 3 P. G. Pringle and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 581.
- 4 C. R. Langrick, D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1983, 2487.
- 5 D. M. McEwan, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1982, 859.
- 6 A. Blagg, A. T. Hutton, P. G. Pringle, and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1984, 1815.
- 7 R. J. Puddephatt, K. A. Azam, R. H. Hill, M. P. Brown, C. D. Nelson, R. P. Moulding, K. R. Seddon, and M. C. Grossel, *J. Am. Chem. Soc.*, 1983, **105**, 5642.
- 8 W. McFarlane, J. Chem. Soc. A, 1967, 1922.
- 9 P. S. Pregosin and R. W. King, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes,' Springer, Berlin, Heidelberg, New York, 1979.
- 10 M. P. Brown, J. R. Fisher, R. J. Puddephatt, and K. R. Seddon, *Inorg. Chem.*, 1979, 18, 2808.
- 11 A. L. Balch, L. S. Benner, and M. M. Olmstead, *Inorg. Chem.*, 1982, 22, 1641.
- 12 T. S. Cameron, P. A. Gardner, and K. A. Grundy, J. Organomet. Chem., 1981, 212, C19.
- 13 P. G. Pringle and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1983, 889.
- 14 R. J. Puddephatt and M. A. Thomson, Inorg. Chem., 1982, 21, 725.
- 15 C. L. Lee, C. T. Hunt, and A. L. Balch, Inorg. Chem., 1981, 20, 2498.

Received 31st July 1984; Paper 4/1356